Index

Page numbers in italic, e.g. 153, refer to figures. Page numbers in bold, e.g. 321, signify entries in tables.

<table>
<thead>
<tr>
<th>2D seismic</th>
<th>back-arc spreading 144</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquisition 1–2, 282</td>
<td>back-thrust</td>
</tr>
<tr>
<td>3D seismic</td>
<td>conjugate 144</td>
</tr>
<tr>
<td>acquisition 2, 282</td>
<td>ramps 48, 50</td>
</tr>
<tr>
<td>displacement mapping 135</td>
<td>barriers to fluid flow, lateral 123–124</td>
</tr>
<tr>
<td>history 1–2</td>
<td>basalt 5–6, 75</td>
</tr>
<tr>
<td>impact on earth sciences 4–5</td>
<td>basement imaging 13, 19</td>
</tr>
<tr>
<td>interpretation 2–3</td>
<td>basin floor fan 27, 29–32</td>
</tr>
<tr>
<td>long-offset 5</td>
<td>basin modelling 4, 321–331</td>
</tr>
<tr>
<td>short-offset, high-resolution 40</td>
<td>basin-scale processes 1, 5, 25</td>
</tr>
<tr>
<td>versus 2D 1–2</td>
<td>bathymetry 171–172</td>
</tr>
<tr>
<td>4C seismic 3, 5–6</td>
<td>Berkin Basin, Algeria 235–248</td>
</tr>
<tr>
<td>4D seismic 3, 5–6, 297–302, 311–320</td>
<td>BIRPS deep reflection seismic projects 4</td>
</tr>
<tr>
<td>accommodation space 36, 76, 88, 94, 101–113, 149, 155, 173, 173</td>
<td>Bonga Field, Nigeria 45</td>
</tr>
<tr>
<td>accretionary prism 143–148</td>
<td>borehole stability analysis 303</td>
</tr>
<tr>
<td>acquisition 284</td>
<td>see also wellbore stability</td>
</tr>
<tr>
<td>wide azimuths 6</td>
<td>bottom simulating reflector 65, 67–69</td>
</tr>
<tr>
<td>long offsets 6</td>
<td>Boulton Fields, Southern North Sea 220–221, 222</td>
</tr>
<tr>
<td>acoustic impedance 236–238, 239, 313–314</td>
<td>breach-point 37</td>
</tr>
<tr>
<td>inversion 4</td>
<td>breccias</td>
</tr>
<tr>
<td>acoustic rock properties 40</td>
<td>explosion 209</td>
</tr>
<tr>
<td>Aegean Sea 323, 324</td>
<td>injection 265</td>
</tr>
<tr>
<td>Aften Slide 54, 59, 60, 191</td>
<td>Brendan’s Dome igneous complex 200, 200</td>
</tr>
<tr>
<td>Aghami Field, Nigeria 45</td>
<td>British Tertiary Volcanic Complex 205</td>
</tr>
<tr>
<td>aggradational reflection configurations 93, 93–95, 99, 121</td>
<td>Caister Field, Southern North Sea 219–221</td>
</tr>
<tr>
<td>Akpo Field, Nigeria 45</td>
<td>calibration, of seismic 40</td>
</tr>
<tr>
<td>Alba Field, North Sea 6, 346, 347</td>
<td>canyon, submarine 95, 98–99</td>
</tr>
<tr>
<td>Allan diagram 5</td>
<td>formation 38, 39</td>
</tr>
<tr>
<td>amplitude anomalies 228, 228–229, 312</td>
<td>wasting 26, 28</td>
</tr>
<tr>
<td>conical-shaped 263, 268–273, 273</td>
<td>Canyonlands Grabens, USA, rift system 109–110</td>
</tr>
<tr>
<td>extraction maps 79</td>
<td>carapace doming, salt 150</td>
</tr>
<tr>
<td>inversion 234</td>
<td>carbonate mounds 295–296, 336 see also coral build-ups; mounds</td>
</tr>
<tr>
<td>mapping 227</td>
<td>Cascadia accretionary wedge 144</td>
</tr>
<tr>
<td>V-shaped 263, 268, 270, 274–275, 311–320</td>
<td>Caspian Sea 306</td>
</tr>
<tr>
<td>analogue models 157</td>
<td>Castellon Field, offshore Spain 92–100</td>
</tr>
<tr>
<td>of flow of melt 178</td>
<td>channel 86–88, 228, 228–231, 231</td>
</tr>
<tr>
<td>of reservoir architecture 25–33, 35–43</td>
<td>development, interaction with topography 73–81</td>
</tr>
<tr>
<td>salt structure formation 159</td>
<td>equilibrium profiles 36</td>
</tr>
<tr>
<td>sandbox 101–115, 129, 130</td>
<td>fill 28–29, 32, 49 see also channel plugging</td>
</tr>
<tr>
<td>analogue outcrops 204, 207, 209, 251, 266</td>
<td>geomorphology 36–38, 40–41, 49, 49, 54</td>
</tr>
<tr>
<td>Asgard Field development, offshore Norway 288–289, 290</td>
<td>imaging 11–33</td>
</tr>
<tr>
<td>aspect ratios 25, 28, 30–32, 38</td>
<td>incision 76, 78, 80, 81, 87, 88, 124</td>
</tr>
<tr>
<td>asset teams 2</td>
<td>knick point 36–37, 37</td>
</tr>
<tr>
<td>Atlantic Ocean, opening 119, 120</td>
<td>plugging 29–31</td>
</tr>
<tr>
<td>attenuation algorithms, multiple 3</td>
<td>ridge 18, 20, 20</td>
</tr>
<tr>
<td>attribute analysis 40, 219, 305, 333–334, 340</td>
<td>structural controls on 45–51</td>
</tr>
<tr>
<td>edge enhancement 250, 252</td>
<td>see also channel-levee system; meanders; moat-channel system; palaeochannel; turbidity flows</td>
</tr>
<tr>
<td>reflection index 286–287, 288–289, 290, 295</td>
<td>channel-levee system 17, 19–20, 26–32, 38, 39, 41, 49–51, 76–79, 95</td>
</tr>
<tr>
<td>see also dip attribute displays</td>
<td>Chao dacitic coulee, northern Chile 215–216</td>
</tr>
<tr>
<td>autotracking see autoticking</td>
<td>Charlie Gibbs Fracture Zone 118, 119</td>
</tr>
<tr>
<td>area tracking 255–261</td>
<td>Clare Lineament, offshore Ireland 118, 119</td>
</tr>
<tr>
<td>seed points 2</td>
<td>Clark Field, Southern North Sea 220–221, 222</td>
</tr>
<tr>
<td>sensitivity to signal variations 3, 284</td>
<td>cliniforms</td>
</tr>
<tr>
<td>shape-based 227–230</td>
<td>breakpoint 83</td>
</tr>
<tr>
<td>steering criteria 2</td>
<td>geometry 216</td>
</tr>
<tr>
<td>trace difference 293</td>
<td>prograding and downlapping 76, 95</td>
</tr>
<tr>
<td>autotracking see autoticking</td>
<td>CO₂ injection 311–320</td>
</tr>
<tr>
<td>AVO 5–6, 230, 237, 237–238</td>
<td></td>
</tr>
<tr>
<td>anomalies 4</td>
<td></td>
</tr>
<tr>
<td>integrity 302</td>
<td></td>
</tr>
</tbody>
</table>
COCORP deep reflection seismic projects 4
Coffee Soil Fault 149–150, 153–159, 163
common mid-point method 1
compactional history 328
compensatory faults 141
compensation faults 141
completion engineering 308
compressional deformation 120, 135, 146, 162, 193–197, 219
ridge-pull stress 180
conjugate margins 321
Connemara Field, offshore Ireland 118
continuity loss 219
contour currents 26, 86, 88, 88
contourites 55–56, 57, 63–71, 83, 87, 88, 120, 210, 280, 284, 286, 291, 295
ridge-pull stress 180
Coriolis Force 22
Corona Sill, Faroes-Shetlands basin 209–216
cracks 29, 229
crustal melting 73
crustal thinning 321, 323
dan Field, offshore Denmark 149
dan salt structure, offshore Denmark 149–150, 152–157, 159–160, 161
data, seismic
overutilization 4
underutilization 3
debris flows 22, 54, 56–59, 65, 68, 69, 210, 265, 280, 282, 284, 286
hummocky 291
see also debrites; Rona Apron; Sandoy fan
debris 25–28, 30, 30–32, 38, 65, 69, 69
décollement surface 136–138, 140, 145
deep reflection seismic 4
deepwater
depositional facies analysis 36
depositional systems 4–5, 17–18, 20–22, 25–33
processes 36–38
deforation
brittle 323
styles 209
velocity 322–325
see also compressional deformation; fault; fold-and-thrust style deformation; thrust faulting
delauney tessellation 342, 344
delta 127, 127, 129, 131, 191
development 91–100
progradation 75–77
density inversion 4, 66, 199, 271, 273
depositional architecture 25–33, 35–43, 47, 79, 263, 286
depositional environments, discerning 35

depositional systems
deepwater see deepwater depositional systems
shallow water see shallow water depositional systems
depth conversion techniques 188, 250, 289, 295
depth imaging 233
detachment faults 84, 85
detachment zone 48–49, 104, 123, 129, 136, 141, 156
see also décollement surface
detectability 282
development, integrated use of 3D seismic in 279–296
dewatering, compactive 146, 183–184, 273
DHI see direct hydrocarbon indicators
diapirs see mud diapir; salt; shale diapir
differential compaction 18, 20, 66, 95, 99, 124, 129, 131, 147–148, 162, 213, 216, 265, 274, 289
digital terrain model, filters 54
dip attribute displays 25–26
direct hydrocarbon indicators 4
discontinuity analysis 250–261
anomalies 251, 252–257, 253
data, dip-steered 250
surface 38
disconformity surfaces 11 see also unconformity surfaces
downwarping, flexural 120
drainage patterns 12
draper, sediment 29, 32, 38, see also pelagic and hemipelagic sedimentation
drilling hazards 35, 39–40, 287, 288–293
incidents 305, 305
performance 303–310
steering 294
use of 3D seismic in 279–296
Earth model 303–308
earthquake activity, cause of sediment remobilization 273
Ebro continental margin, offshore Spain 91, 92, 95, 99
Ekofisk Field, offshore Norway 282
elastic impedance 236–242, 244–248, 244, 297
elastic inversion technique 230
environmental assessments 53
Erha Field, Nigeria 45
Erlend igneous complex 200
erosional features 192, 196, 242, 265
as a sequence boundary 83–89
Messinian 91
Ethiopian Rift, Northern, rift system 109
extension 179, 184
basin modelling 321–331
regional 129
thick-skinned 162
thin-skinned 133–142, 156, 160, 323
Faroes-Iceland Ridge 187, 188
Faroes-Shetland Basin 73–82, 182, 199–217, 289, 289–293 see also Faroes-Iceland Ridge; Faroes-Shetland Channel; Judd Deep; Wyville-Thompson Ridge
Faroes-Shetland Channel (FSC) 283
seabed morphology 53–61, 63–71, 279, 290, 283–285
Tertiary inversion 187–198
fault 249–261, 284, 287, 295
array evolution 117–142
block 236, 328
rotation 28, 129, 179, 181, 183–184
compaction, layer-bound 146–148
concentric 158
conjugate arrays 106, 106, 123, 124
counter-regional 165, 166
cut-off lines 258, 259
displacement analysis 138–139, 339–348
extensional 112, 221, 293, 308
offset 104, 105, 107, 123, 126, 131
geometry 5, 339–348
birds-foot 127
growth 140, 156
hydraulic properties 308
INDEX

352

leg 190 143
leg 196 143
well 808 144, 146–147
well 1173b 144
well 1174b 144, 146–147
interpreter, seismic
 evolving role of 4
 mindset of 3
inverse modelling 321–331
inversion 74, 112, 119, 120, 159, 184, 187–198 see also density inversion; Weyr stratigraphic inversion complex
IODP see International Ocean Drilling Programme

Judd Deeps see Judd Falls
Judd Falls (previously known as Judd Deeps) 54, 56, 57, 59, 188, 190–191, 191–197, 200, 279, 280
Judd High 73, 74

Karoo Basin, South Africa 181, 204, 209–210, 216
kinematics 5
Kraka Field, offshore Denmark 149
Kraka salt structure, offshore Denmark 149, 152–156, 158–160
Kutei Basin, Indonesia 25–33

lacustrine basin 134
landslides 54, 59 see also slides
lateral accretion surfaces 11, 12–16
limit of separability 282, 285
lithofacies 239
lithological distribution patterns 11
lithology
 direct indicators of 4
 prediction 6, 11
lithospheric loading 326
load structures 273
Lomond Field, UK 6
Lower Congo Basin, offshore Angola 133–142
lowstand deposition 22, 311
systems tracks 121
Loyal Field, West of Shetland 280, 297–302

magmatic underplating 177–179 see also High Velocity Body
magnetic anomalies, recognition of 4
mapping, subsurface geological, new age 1
mass transport
 deposits 37, 68, 69, 77, 78–80, 95, 192
 processes 21, 28, 66, 285
wasting 84
see also Afen Slide; contourites; debris flows; debrisites; landslides; slides; slump scars; Storegga Slide; talus deposits; turbidity flows
master erosion surface 28, 30
McAdam Field, Southern North Sea 220–222, 221, 224
meanders, channel 14–17, 17, 25, 37, 41, 99, 228–231
loop migration 18, 20
megamergers 4
Messinian ‘salinity crisis’ 91, 98–99
meteor impact craters 4
micro-earthquake events 6
Mid-Atlantic Ridge 196
Mid-North Sea High 149
migration
 depth, post-stack 220, 224
 depth, pre-stack 5, 230, 264
 over 211

smiles 202
time 220–221, 223–225
time, pre-stack 264
Mississippi 12, 15
Delta 279
Fan 28
moat-channel system 66–68, 69
moat-drift complex 69, 284, 286
moraines, glacial 55, 56
mounds 181, 184, 263, 265, 267–268, 269, 275
mud diapirs 25–26, 27, 179, 181, 181–184, 183–184
mud volcanoes 6, 307, 334, 336
multiple suppression 283
Murdoch Fault 220
Murdoch Field, Southern North Sea 219–221
Murdoch K Field, Southern North Sea 219–226

NADW see North Atlantic Deep Water
Nankai subduction zone, SW Japan 143–148
Navier-Coulomb behaviour 101
near-seafloor seismic studies 25, 35–43
net-to-gross variations 25, 31
neural network detection system 5, 219, 333–337
Niger Delta, Nigeria 41, 45–51, 279, 336, 336
Njord Field, offshore Norway 249–261
noise levels 3, 236, 271, 283, 283, see also seismic data quality
North Atlantic Deep Water (NADW) 63, 69, 187, 189–190 see also Northern Component Water
North Atlantic Drift 280
Southern 110, 112, 219–226
Northern Component Water 187, 196, 196
southern gateway 195
Norwegian Sea Deep Water 64, 66, 70

offshore installation integrity 4
onlap 75, 79, 84, 95, 182, 184, 242
opacity function 2, 228
opal C/T
 precipitation 66
 reflector 179, 288
optical stacking 4
Ormen Lange Field, offshore Norway 282, 285
outcrop scale limitations 1
overpressure 40, 129–130, 147, 158, 184, 273, 283, 290, 335

palaeo-flow direction 14
palaeo-sea bed 213–214, 267–268
palaeo-shelf-break 93
palaeo-topography 79–80, 88, 98, 99, 184, 194, 235
palaeobathymetry 88, 327–328
palaeochannel 98
palaeoclimatic records 63
palaeoerosion 83, 147
Paranthi, Gulf of Thailand, rift system 110, 111
pelagic and hemipelagic sedimentation 28–29, 38, 143–144, 263, 265
peperites 209
petrophysics 4
 corrections 236–237
 for automatic geo-body identification 231–234 see also rock properties; synthetic seismograms
 phreatic eruptions 209
pipeline and cable routes 275, 296
INDEX 353

pockmarks 4, 183, 191, 199, 271, 334, 336, 336
point bar deposition 11–12, 13–16
ponded sediments 36–37, 49, 92
Porcupine Basin, offshore Ireland 117–132
pore pressure 302, 304, 305, 306, 307
see also pore pressure
principal components analysis 229
progradation 75–76, 84, 88, 92–93, 94–95, 121
protothrust zone 144, 145
pull apart basin 227
raft system 133–142, 219
ramp system 84, 85, 249
recording and processing, digital 1
regression 20, 21
regressional cycle model 45
relative sea-level change 21, 28, 30, 30–32, 76–77, 80, 81, 94–95, 120
relay ramp structures 101–113, 249
soft-linked 109
remobilization of clastic sediments, post-depositional 4, 263–277
reservoir
caprock 311 see also seal
characterization 236, 301
connectivity 31, 39
distribution
controls on 51
prediction 11, 31
management improvement 11
models 35, 38, 39
resolution 219
Reykjanes Ridge 188
ridge-channel systems 67, 67–68
ridge jumps 195, 196
rift basins 101–113, 119, 210, 235, 321, 329
architecture 113, 134
fault reactivation 122, 129–131
margin fault system 105, 107–109, 112–113, 122
rift model
offset 110
orthogonal 110
rig site surveys 53
Ringkøbing-Fyn High 83, 84, 149
risk reduction 2, 282, 284–285, 287
Rita Field, Southern North Sea 220–221, 222
rock properties
calibrated to petrophysics 4, 235–248
strength 307
roho salt system 165, 168, 175
Rona Apron debris flow, Faroes-Shetland Channel 279, 280, 289
Saline Aquifer CO₂ Storage (SACS) methods 311–320
salt 40, 333
counter-regional salt system 165–176
diapirs 32, 135, 140–141, 150, 293–295, 340
evacuation 141, 149, 157–160, 162, 166, 167, 173–175
flow rate 172
imaging below 6, 101
‘keel’ structure 167, 171
pillows 136, 138, 141, 150, 152, 153, 154–155, 158, 160
rise and fall model of raft tectonics 133, 136, 140–141
roller-type structure 151
stock canopies 165
structures, evolution and growth 149–163, 165–176
tectonics 5
tongue canopy 172–175
wedges 159
wells 166–172, 174, 175
San Jorge Basin, Argentina 327–328
Sandoy fan, Faroes-Shetland Channel 284, 286
sandstone intrusions 263–277
saturation prediction 302
Schiehallion Field development, West of Shetland 280, 289–293, 297–302
sea-level change 74, 83, 99
eustatic 73, 80, 134
glacio-eustatic 69
see also relative sea-level change
seabed
morphology 53–61
sensors, permanent 6
stability 281, 282
seafloor
conditions, unfavourable 40
spreading 119, 146, 147 see also ridge jump
seal 236
breach 336
distribution prediction 11
fracturing of 274
integrity 183–184
resolution 219, 223
sediment
apron 45, 95 see also Rona Apron
extensional collapse of 47, 49
bypass zone 173
drape see drape
mobilization 263–277
supply, directional switch 83
climbing 64, 68
sedimentation processes, discerning 35
seed points, for autopicking 2
seep communities 268
seismic
2D see 2D seismic
3D see 3D seismic
band limitation 264
data quality 302
geomorphology 5, 11–24
imaging 264, 283
inversion 241–248
processing, challenges 2, 5, 269, 284, 301
refraction 177
resolution 2, 25, 35–36, 279, 283, 283, 288, 301, 302, 339
signal/noise levels 3, 236, 271
stratigraphy 4–5, 11, 92–95, 183, 280
integration with seismic geomorphology 11, 12
thin-bed effects 312–314, 318
trace difference technique 293
valving models for permeability 308
wavelet, understanding of 2, 243
wide-angle reflection studies
expanding-spread profiles 177
ocean-bottom seismometer 177
see also 2D seismic: 3D seismic: 4C seismic: 4D seismic:
aoustic impedance; amplitude anomalies; attribute analysis:
apopicking; AVO; bottom simulating reflector;
calibration; clinoforms; data; deep reflection seismic;
depth conversion techniques; depth imaging;
detectability; dip attribute displays; discontinuity; elastic impedance; elastic inversion technique; fault; flat-spot analysis; geo-body; geological modelling; grid-based interpretation; interpreter; inversion; limit of separability; migration; multiple suppression; near-seafloor seismic studies; neural network detection system; noise levels; opacity function; shallow section 3D seismic; shear velocity; skeletonization algorithm; synthetic seismograms; trace shape extraction techniques; velocity; visualization; volume; voxel; V-shaped profile; workflow

sequence restoration 170–173
sequence stratigraphy 73–81, 120–121, 292
boundary 83–89
maximum flooding surfaces 166, 169
see also seismic stratigraphy
shale diapir 335, 335
shallow section 3D seismic 35–43, 53–61, 279–296
shallow water
flow 40
shear 236–238, 247
signal-to-noise ratio see noise levels
sills 5, 180–181, 209–217
geometry of 199–202, 207–208
junctions 202–207
simulation model building 258–260, 300, 301, 319
history matching 308
site development investigations 53
skeletonization algorithm 135, 340–342
Skjold Field, offshore Denmark 149
Skjold salt structure, offshore Denmark 149–150, 152–160, 162
Sleipner Field, North Sea 311–320
slides 83–86, 86, 88, 131, 282
scars 68, 68
see also Afen Slide; gravity sliding; Storegga Slide
slope
fan 27, 29, 30, 32, 54, 58–59, 59
instability 40, 129, 131, 284–285
slope-canyon morphology 25–33
slope-channel complexes 28–30, 30, 32
slump 86, 88, 120
scars 22–23, 23, 28, 65–67, 70, 191 see also slide scars
Slyne Basin, offshore Ireland 118, 118
Smith, William (1769–1839) 1
soft-sediment deformation 4
source rock
distribution prediction 11
maturation of 133, 141
South Pass 89 Field, offshore Gulf of Mexico 165
Southern Salt Dome Basin, North Sea 149–163
spatial aliasing 2
spatial stacking 4, 28, 35
spill-point 37, 37
stacking patterns 30–32, 38, 41, 49, 58, 121, 235
see also spatial stacking
Statfjord Field, Norway 6
steering criteria, for autopicking 2
Storegga Slide, offshore Norway 282, 285
strain
analysis 5
rate history 321–331
stratigraphic discontinuities 12
stratigraphic growth patterns 136–138
stratigraphic targets, extraction of 227–234
stratigraphic trap 23–24, 333, 335
stratigraphy
‘Christmas tree’ 183, 185
renovation of 1
see also seismic stratigraphy; stratigraphic targets;
stratigraphic trap
stress, regional 307
stretches, lithospheric 322, 327, 331
structural aliasing 6
structural complexity 219
structural restoration 340
structure, relationship to deep-water channels 49–51
subduction thrust system 143–148
subsidence 174, 181, 321, 323
differential 99
gradient 329
history 326
in overburden 6
regional 131
thermal 73, 76, 83, 119–121, 162, 195, 199, 327, 329–330
Suiilven Field, West of Shetland 280
supercritical fluid 311
survey footprint noise 54
syneresis 147
synthetic seismograms 2

U-test 239, 240–241
talus deposits 98, 99
template horizon 227–230
thalweg development 36–37, 98
thermohaline currents 70
thrust faulting 47, 48
imbrecate 144
see also back-thrust ramps; protothrust zone; subduction
thrust system; toe-thrusting
time-lapse 3D seismic see 4D seismic
toe-thrusting 28, 32, 47, 48, 65
anticlines 25–26, 26–27, 29, 31
toplap relationship 93
trace shape extraction techniques 227
classification 229–230, 231
trackers 2
transfer
faults 102, 104, 109, 113
zones 47–51, 73
Transverse Zone 150
Troll Field, offshore Norway 282
turbidite plays 134, 141
turbidity flows 18, 28–29, 54, 58, 70, 99, 143–147, 173
Tyne Fields, Southern North Sea 220–221, 223

unconformity surfaces 16–17, 138, 162, 192–193
base Cretaceous, offshore Ireland 120, 131
base Permian, Southern North Sea 220, 221, 222
base Upper Pliocene, offshore Norway 179
glacial, Faroes-Shetland Basin 64–65, 65
super resolution 284–286, 289
Hercynian, Algeria 242, 244–245
intra Neogene, Faroes-Shetland Basin 64–69, 64–66,
190–196, 279–290
Messinian, Spain 91–100
mid Miocene, Central North Sea 293, 293–294
mid Miocene, Faroes-Shetland Basin 65, 65
mid Miocene, Southern North Sea 220
near top Oligocene, North Sea 83–89
Top Palaeogene (formerly termed the latest Oligocene-early
Miocene or LOEMU), Faroes-Shetland Basin 65, 66, 188,
190–197, 279–296

storegga slide 335, 335
shallow section 3D seismic 35–43, 53–61, 279–296
uplift
 Permian 210, 219
 pre-Cenomanian 179–185
 regional 120, 129, 130, 187

V-shaped profile 311–320
 amplitude anomalies 263
 ridges 188, 195–196, 196
Valencia trough, offshore Spain 91, 92
Valhall Field, Norway 6
valleys
 buried 84, 94–95
 incised 23, 124
 Messinian dendritic system 94–98
Var sedimentary ridge 26, 31
velocity
 pull-up 182, 271
 push-down 152, 191, 312–320
 push-down-amplitude ratio 319, 319
 factor 316–319
 Total Integrated Time Delay 316, 318–319, 318
 shear 236–238, 247
 structure 219
Viking Graben, offshore UK 263–277
virtual reality 260
 of fault systems 138
 of production characteristics 297–302
volcanoes, submarine 199, 213

volume
 interpretation methods 217–234, 238
 porosity 231, 232
 rendering 219
 sculpturing 254–256
Voronoï tessellation 341, 347
voxel, evolution 2–3, 271

welding, pre-salt/post-salt 140–141
well
 performance prediction 297–298, 300
 planning 4, 260, 303, 307–308
 wellbore stability 303, 304, 306–307
West Delta 133 Field, offshore Gulf of Mexico 165
West Shetland Drift (WSD) 64–70
Western Frontiers Association (WFA) regional investigation, Norway 53, 285
Westray inversion complex, Faroes-Shetland Basin 190, 191, 195, 197, 200
workflow
 for production forecasting 249
 for reservoir prediction 236, 238
 for seismic interpretation and processing 250, 257, 339
 for time migration interpretation 223
 for well planning 249, 303–309
 optimisation 2
Wyville-Thompson Ridge 63, 64, 73, 74, 187, 188, 194–195