The Geology of Svalbard

To Svalbard Colleagues
View of Ny-Ålesund settlement seen from the west with three mountain peaks, Tre Kroner, in the distance. The peaks are capped by Carboniferous strata unconformably resting on Early Devonian rocks. They are 30 km distant from the buildings, being foreshortened by the telephoto lens. The glacier from which they emerge as nunataks extends about 15 km nearer. The remaining 15 km just visible is the eastern, inner part of Kongsfjorden. To the right in the foreground is a raised, insulated and heated utiliduct supplying water from a small lake. Photo M. J. Hambrey, CSE 1962 (SP.941e).

View WSW from the old road quay at Ny Ålesund, with Scheteligfjellet in the centre right formed mainly of Carboniferous and Permian strata. Typical low cloud is creeping half way up the mountain from the right. The middle foreshortened low tundra with snow is characteristic raised beach or strandflat topography. The cliffs in the foreground usually about 5–10 m high form the coastline of the shallow bay, Thiisbukta, where in somewhat deeper water motorboats have a sheltered anchorage. The ice in the foreground is ‘bay ice’, which forms each winter and melts in the early summer. After a hard winter (probably in June) this bay ice is grounded in shallow water at low tide. In a few days it would disintegrate and drift away with tide. Photo M. J. Hambrey (SP631).
The Geology of Svalbard

By

W. BRIAN HARLAND
(University of Cambridge, UK)

Assisted by
LESTER M. ANDERSON and DAOUDE MANASRAH
(CASP, UK)

With contributions by
NICHOLAS J. BUTTERFIELD
(University of Cambridge, UK)

ANTHONY CHALLINOR
(deceased formerly University of Cambridge, UK)

PAUL A. DOUBLEDAY
(CASP, UK)

EVELYN K. DOWDESWELL
(University of Aberystwyth, UK)

JULIAN A. DOWDESWELL
(University of Aberystwyth, UK)

ISOBEL GEDDES
(CASP, UK)

SIMON R. A. KELLY
(CASP, UK)

EDA L. LESK
(CASP, UK)

ANTHONY M. SPENCER
(Statoil, Norway)

CLARE F. STEPHENS
(CASP, UK)

Memoir 17
1997
Published by
The Geological Society
London
The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of ‘investigating the mineral structure of the Earth’. The Society is Britain’s national society for geology with a membership of around 8000. It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society’s international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN 1–897799–93–4

Typeset by Aarontype Ltd, Unit 47, Easton Business Centre, Felix Road, Bristol BS5 0HE, UK.

Printed by Alden Press, Osney Mead, Oxford OX20EF, UK.

Distributors
USA
AAPG Bookstore
PO Box 979
Tulsa
OK 74101-0979
USA
(Oders: Tel. (918) 584-2555
Fax (918) 560-2652)

Australia
Australian Mineral Foundation
63 Conyngham Street
Glenside
South Australia 5065
Australia
(Oders: Tel. (08) 379-0444
Fax (08) 379-4634)

India
Affiliated East-West Press PVT Ltd
G-1/16 Ansari Road
New Delhi 110 002
India
(Oders: Tel. (11) 327-9113
Fax (11) 326-0538)

Japan
Kanda Book Trading Co.
Tanikawa Building
3-2 Kanda Surugadai
Chiyoda-Ku
Tokyo 101
Japan
(Oders: Tel. (03) 3255-3497
Fax (03) 3255-3495)
Contents

List of figures ix
List of tables xiii
List of photographs xiii
Preface xv
Acknowledgements xvii
Participants xix
Conventions xxi

PART 1 Introduction

CHAPTER 1 SVALBARD

1.1 Geographical names 3
1.2 Topography and bathymetry 3
1.3 The physical environment 7
1.4 The biota 10
1.5 Political history 11
1.6 The Spitsbergen Treaty 11
1.7 Settlements 13
1.8 Official publications 13

CHAPTER 2 OUTLINE HISTORY OF GEOLOGICAL RESEARCH

2.1 Early exploration 16
2.2 1858 to 1920 16
2.3 1920 to 1945 18
2.4 1946 to 1960 19
2.5 1960 to 1975 20
2.6 1975 onwards 21

CHAPTER 3 SVALBARD'S GEOLOGICAL FRAME

3.1 The space frame: Svalbard's structural frame 23
3.2 The time frame 25
3.3 The rock frame 29
3.4 Tectonostratigraphic sequences 31
3.5 Geotectonic interpretations 37

PART 2 Regional descriptions

CHAPTER 4 THE CENTRAL BASIN

4.1 Geological frame 47
4.2 Van Mijenfjorden Group (Paleogene) 47
4.3 Adventdalen Group (Cretaceous–Jurassic) (by S. R. A. Kelly) 52
4.4 Kapp Toscana and Sassendalen Groups (Liassic–Triassic) (with I. Geddes) 59
4.5 Bünsow Land Supergroup (Permian–Carboniferous) 63
4.6 Tempelfjorden Group (Permian) with I. Geddes & P.A. Doubleday 63
4.7 Gipsdalen Group (Permian–Carboniferous) with I. Geddes & P.A. Doubleday 66
4.8 Billefjorden Group (Early Carboniferous) with I. Geddes & P. A. Doubleday 71
4.9 Structure and development of Central Basin 73

CHAPTER 5 EASTERN SVALBARD PLATFORM

5.1 Platform strata 75
5.2 Igneous rocks 76
5.3 Submarine outcrops 76

CHAPTER 6 NORTHERN NORDAUSTLANDET

6.1 Early work 96
6.2 Stratal succession 96
6.3 Subjaenct metamorphic complex 104
6.4 Late tectonic plutons 105
6.5 Minor igneous bodies 106
6.6 Summary of isotopic ages 106
6.7 Structure of Nordaustlandet 107
6.8 The Lomonosov Ridge in relation to Nordaustlandet 108

CHAPTER 7 NORTHEASTERN SPITSBERGEN

7.1 Geological frame 110
7.2 Younger (cover) rocks 112
7.3 Post-Permian deformation 112
7.4 Ny Friesland plutons 112
7.5 The Hecla Hoek Complex: the continuing debate 113
7.6 Hinlopenstretet Supergroup 116
7.7 Lomfjorden Supergroup 118
7.8 Stubendorfbreen Supergroup: succession 121
7.9 Stubendorfbreen Supergroup: genesis 125
7.10 The Hecla Hoek Complex: mid-Paleozoic structure and metamorphism 128

CHAPTER 8 NORTHWESTERN SPITSBERGEN

8.1 Cenozoic volcanic rocks of the Woodfjorden area 133
8.2 Mesozoic, Permian and Carboniferous cover 134
8.3 Liefde Bay Supergroup (Devonian) 135
8.4 The ‘crystalline’ rocks of Northwestern Spitsbergen 142
8.5 Structure 145
8.6 Offshore geology (with P.A. Doubleday) 152

CHAPTER 9 CENTRAL WESTERN SPITSBERGEN

9.1 Paleogene strata 154
9.2 Mesozoic strata of Oscar II Land 158
9.3 Late Paleozoic strata of Oscar II Land 159
9.4 Early Paleozoic rocks 162
9.5 Proterozoic strata of Oscar II Land 165
9.6 Pre-Carboniferous rocks of Prins Karls Forland 166
9.7 Structure of Oscar II Land (with P. A. Doubleday) 168
9.8 Structure of Prins Karls Forland 171
9.9 Structure of Forlandsundet Basin (with P. A. Doubleday) 175
9.10 A tectonic interpretation of the West Spitsbergen Orogen: northern segment 177

CHAPTER 10 SOUTHWESTERN AND SOUTHERN SPITSBERGEN

10.1 Paleogene strata 180
10.2 Mesozoic strata in southwest Sorkapp Land 182
10.3 Permian and Carboniferous strata of southern Spitsbergen
10.4 Devonian strata
10.5 Proterozoic strata of western Nordenskiöld Land
10.6 Proterozoic strata of western Nathorst and northwestern Wedel Jarlsberg Lands
10.7 Early Paleozoic and Proterozoic strata of southwestern Wedel Jarlsberg Land
10.8 Early Paleozoic and Proterozoic strata of Sørkapp Land
10.9 Pre-Devonian correlation through southwest Spitsbergen
10.10 Structure of western Nordenskiöld Land
10.11 Structure of western Nathorst Land
10.12 Structure of Wedel Jarlsberg Land (with P. A. Doubleday)
10.13 Structure of Sørkapp Land (with P. A. Doubleday)

CHAPTER 11 SOUTHERN SVALBARD: BJÖRNÖYA AND SUBMARINE GEOLOGY
11.1 Early work
11.2 Geologic frame of Bjornoya
11.3 Triassic strata of Bjornoya
11.4 Late Paleozoic strata of Bjornoya (with I. Geddes)
11.5 Pre-Devonian strata of Bjornoya
11.6 Structural sequence of Bjornoya
11.7 Submarine outcrops
11.8 Submarine structure (with P. A. Doubleday)

PART 3 Historical Synthesis
CHAPTER 12 PRE-VENDIAN HISTORY
12.1 Precambrian time scales
12.2 Pre-Vendian rock successions
12.3 Pre-Vendian biotas (by N. J. Butterfield)
12.4 Precambrian isotopic ages
12.5 Tectonostratigraphic evidence for proto-basement
12.6 Pre-Vendian correlation
12.7 Palinspastic considerations

CHAPTER 13 VENDIAN HISTORY
13.1 Vendian time scale and correlation
13.2 Vendian successions and correlation in Svalbard
13.3 Vendian biotas
13.4 Vendian environments
13.5 Vendian international correlation
13.6 Vendian palinspastic discussion

CHAPTER 14 CAMBRIAN–ORDOVICIAN HISTORY
14.1 Cambrian–Ordovician time scale
14.2 Cambrian–Ordovician biotas and correlation
14.3 Cambrian–Ordovician sedimentary environments
14.4 Cambrian–Ordovician tectonic environments
14.5 Cambrian–Ordovician terranes and palinspastics

CHAPTER 15 SILURIAN HISTORY
15.1 Silurian time
15.2 Silurian supracrustal events: sedimentation and tectonics
15.3 Silurian tectogenesis
15.4 Silurian petrogenesis of crystalline rocks
15.5 Silurian terranes, provinces and palinspastics
15.6 Sequence of Silurian (main Caledonian) events

CHAPTER 16 DEVONIAN HISTORY
16.1 Devonian time scale and correlation
16.2 Devonian succession
16.3 Devonian biotas
16.4 Silurian and Devonian sedimentation
16.5 Devonian tectonics
16.6 The question of sinistral Paleozoic strike-slip faulting, transpression and transtension
16.7 Sequence of events through Devonian time
16.8 A Lomonosov conjecture

CHAPTER 17 CARBONIFEROUS–PERMIAN HISTORY
17.1 Early work
17.2 Stratigraphic frame: Bünsow Land Supergroup
17.3 Structural frame
17.4 Carboniferous and Permian time scale
17.5 Carboniferous–Permian sedimentary environments (by I. Geddes)
17.6 Carboniferous–Permian fossil record
17.7 Carboniferous–Permian tectonic control of sedimentation (with I. Geddes)
17.8 Carboniferous and Permian palaeogeography

CHAPTER 18 TRIASSIC HISTORY
18.1 Early work
18.2 Structural frame
18.3 Triassic rock units
18.4 Triassic time scale and international correlation (with I. Geddes)
18.5 Triassic biotas
18.6 Sequence of Triassic environments (with I. Geddes)
18.7 Triassic regional palaeogeology

CHAPTER 19 JURASSIC–CRETACEOUS HISTORY
19.1 Early work
19.2 Jurassic–Cretaceous structural frame
19.3 stratigraphic scheme
19.4 Jurassic–Cretaceous time scale and correlation (with S. R. A. Kelly)
19.5 Jurassic–Cretaceous formations
19.6 Jurassic–Cretaceous biotas
19.7 Jurassic–Cretaceous events in Svalbard (with S. R. A. Kelly)
19.8 Svalbard in a Jurassic–Cretaceous regional context

CHAPTER 20 PALEOGENE HISTORY
20.1 Early work
20.2 Structural and stratigraphic frame
20.3 Paleogene time scale and correlation
20.4 Paleogene biotas of Svalbard
20.5 Paleogene sedimentation and tectonics
20.6 Paleogene structures (with A. Challinor & P. A. Doubleday)
20.7 Structural sequence
20.8 Regional tectonic sequence
20.9 Paleogene tectonosedimentary history

CHAPTER 21 NEOGENE–QUATERNARY HISTORY
21.1 Neogene–Quaternary time scale
21.2 Plate motions (by C. F. Stephens)
21.3 Deep structure of Svalbard
21.4 Neogene–Holocene volcanism and thermal springs (by C. F. Stephens)
CHAPTER 1

Fig. 1.1 Regional geographical setting of Svalbard 3
Fig. 1.2 Principal islands and fjords of Svalbard 4
Fig. 1.3 The ‘lands’ of Svalbard 5
Fig. 1.4 Map showing the principal topographic features of Svalbard 6
Fig. 1.5 Bathymetry of the western Barents Shelf 7
Fig. 1.6 Prevailing surface currents of the Barents Sea and North Atlantic areas 8
Fig. 1.7 Principal ice cover and valleys of Svalbard 9
Fig. 1.8 Diagrammatic map to show boundaries of possible political interest 12
Fig. 1.9 Marine chart sheet coverage of Svalbard 14
Fig. 1.10 Map showing environmentally protected areas of Svalbard 12
Fig. 1.11 Topographic and geological map coverage of Svalbard 14

CHAPTER 2

Fig. 2.1 Geological sketch map of Spitsbergen by Hans Frebold 2
Fig. 2.2 Geological map of Spitsbergen by A. G. Nathorst 17

CHAPTER 3

Fig. 3.1 Svalbard in the Arctic (Polar projection) 23
Fig. 3.2 Generalized geological map of Svalbard 24–5
Fig. 3.3 Regions of Svalbard as used in this book for Chapters 4 to 11 25
Fig. 3.4 Principal discontinuities in Svalbard 26
Fig. 3.5 Major structural features of the western Barents Shelf 26
Fig. 3.6 Russian structural map of Svalbard 27
Fig. 3.7 Provisional time scale used in this book 28
Fig. 3.8 Svalbard chronometric record 30
Fig. 3.9 Tectonostratigraphic terranes of Svalbard 32
Fig. 3.10 (a) Simplified stratigraphy and geological evolution of Svalbard 39
(b) Schematic map of rock units and terranes 40
Fig. 3.11 Sequence of palinspastic reconstructions for the North Atlantic and Arctic from Cambrian to the present-day 41–2
Fig. 3.12 Summary of successive palaeolatitudes for Europe and North America for Silurian to Neogene time 43
Fig. 3.13 Plot of subsidence against time for western, central and eastern areas 44

CHAPTER 4

Fig. 4.1 Reproduction of the Festningen profile as by Hoel & Orvin (1937) 49
Fig. 4.2 Map of the Paleogene outcrops in the Central Basin 50
Fig. 4.3 Stratigraphy of the Van Mijenfjorden Group 51
Fig. 4.4 Geological map and cross-section of eastern Nordenskiöld Land and Sabine Land 54
Fig. 4.5 Geological map of the east coast of Spitsbergen from Agardhbutka to Hamburgfjellet 55
Fig. 4.6 Geological map and cross sections of the Adventdalen Group in Wedel Jarlsberg Land and western Torell Lands 56
Fig. 4.7 Map of the Paleogene outcrops in the Central Basin 50
Fig. 4.8 Geological map and cross sections of the Adventdalen Group in Oscar II Land, Nordenskiöld Land and Nathorst Land 58
Fig. 4.9 Fence diagram showing the distribution and thickness variation of the Sassendalen and Kapp Toscana groups 60

CHAPTER 5

Fig. 5.1 Map of the eastern platform area of Svalbard showing the main place names and principal bathymetric features 76
Fig. 5.2 Geological map of eastern Ny Friesland 78
Fig. 5.3 Geological map of southwestern Nordaustlandet showing the known extent of Phanerozoic outcrops 80
Fig. 5.4 Stratigraphical schemes for Permian and Triassic units of Nordaustlandet 81
Fig. 5.5 Sketch map of Svenskoya, Kongsoya and Abeloya 82
Fig. 5.6 Sketch map of Svenskoya showing principal topographic features and geology 82
Fig. 5.7 Sketch map of Kongsoya showing principal topographic features and geology 83
Fig. 5.8 Summary of schemes of rock units, and their ages, of Kong Karls Land 84
Fig. 5.9 Correlation of the principal stratigraphic sections on Kongsoya 84
Fig. 5.10 Correlation of the principal stratigraphic sections on Kongsoya 85
Fig. 5.11 Proposed nomenclature for local rock units on Barentsøya and Edgeøya 87
Fig. 5.12 Geological map of Barentsøya and Edgeøya 88
Fig. 5.13 Interpretation of Raddalen-1 well (Edgeøya) 90
Fig. 5.14 Interpretation of Plurdalen-1 well (Edgeøya) 91
Fig. 5.15 Edgeøya and Barentsøya Triassic biostratigraphy 91
Fig. 5.16 Generalized structural map of Barentsøya and Edgeøya, with structure contours for the top of the Barentsøya Formation 92
Fig. 5.17 Geological map of Hopen and a longitudinal section along the island 92
Fig. 5.18 Interpretation of Hopen-1 and Hopen-2 wells 94
Fig. 5.19 Correlation of the Raddalen-1, Plurdalen-1, Hopen-1 and Hopen-2 wells 95

CHAPTER 6

Fig. 6.1 Map of northern Nordaustlandet showing principal topographic features, ice–rock boundaries and major place names 97
Fig. 6.2 Preferred names for rock units in Nordaustlandet and their approximate equivalents in Ny Friesland, with estimated thicknesses 98
Fig. 6.3 Geological map of northwestern Nordaustlandet 101
Fig. 6.4 Summary of isotopic ages from Nordaustlandet 107
Fig. 6.5 Outline geological map of Nordaustlandet and adjacent areas of Ny Friesland 108

CHAPTER 7

Fig. 7.1 Topographic and place name map of Ny Friesland 111
Fig. 7.2 Summary of the Hecla Hoek succession of Ny Friesland 114
Fig. 7.3 Generalized geological map of Ny Friesland outlining the distribution and subdivision of the Hecla Hoek Complex 115
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 10.6 Comparison of stratigraphic schemes for southwest Spitsbergen</td>
<td>196</td>
</tr>
<tr>
<td>Fig. 10.7 Correlation of Pre-Devonian units in southwest Spitsbergen</td>
<td>197</td>
</tr>
<tr>
<td>Fig. 10.8 Structural map and representative cross-sections of Nordenskjöld Land, illustrating the structure of Carboniferous to Cretaceous units</td>
<td>202</td>
</tr>
<tr>
<td>Fig. 10.9 Simplified structural profile across the Midterhukens Peninsula</td>
<td>203</td>
</tr>
<tr>
<td>Fig. 10.10 Schematic structural profile of northern Sørkapp Land</td>
<td>203</td>
</tr>
</tbody>
</table>

CHAPTER 8

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 9.1 Topographic and place name map of Oscar II Land and Prins Karls Forland</td>
<td>155</td>
</tr>
<tr>
<td>Fig. 9.2 Diagrammatic outcrop map of central west Spitsbergen</td>
<td>156</td>
</tr>
<tr>
<td>Fig. 9.3 Geological map and stratigraphic section of the Ny-Ålesund coalfields</td>
<td>157</td>
</tr>
<tr>
<td>Fig. 9.4 Summary of the Paleogene stratigraphic units in Forlandsundet</td>
<td>157</td>
</tr>
<tr>
<td>Fig. 9.5 Fence diagram showing the stratigraphic relationships within the St Jonsfjorden Trough</td>
<td>160</td>
</tr>
<tr>
<td>Fig. 9.6 Structural cross-section showing the major folds and thrusts in the Mediumfjellet-Lappdalen area</td>
<td>171</td>
</tr>
<tr>
<td>Fig. 9.7 Alternative structural profiles across northern Prins Karls Forland to illustrate the different interpretations of the structure</td>
<td>173</td>
</tr>
<tr>
<td>Fig. 9.8 Lithostratigraphic formations and geological map of south-central Prins Karls Forland</td>
<td>174</td>
</tr>
<tr>
<td>Fig. 9.9 Simplified structural map and cross-sections of the Forlandsundet Graben</td>
<td>176</td>
</tr>
<tr>
<td>Fig. 9.10 Schematic diagram of 'flower structure' within a convergent strike-slip fault zone</td>
<td>177</td>
</tr>
</tbody>
</table>

CHAPTER 10

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 10.1 Topographic and place name map from Isfjorden to Sorkapp</td>
<td>180</td>
</tr>
<tr>
<td>Fig. 10.2 Generalized outcrop map of central and southwestern Spitsbergen</td>
<td>181</td>
</tr>
<tr>
<td>Fig. 10.3 Simplified tectonic map of central and southwestern Spitsbergen</td>
<td>182</td>
</tr>
<tr>
<td>Fig. 10.4 Vendian geology of northwest Wedel Jarlsberg Land</td>
<td>190</td>
</tr>
<tr>
<td>Fig. 10.5 Stratigraphic schemes for the Precambrian succession of southern Wedel Jarlsberg Land</td>
<td>193</td>
</tr>
</tbody>
</table>

CHAPTER 11

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 11.1 Bathymetric map of the western Barents Sea around southern Svalbard, with principal bathymetric features named</td>
<td>209</td>
</tr>
<tr>
<td>Fig. 11.2 Summary of stratigraphic schemes for Bjørnøya</td>
<td>210</td>
</tr>
<tr>
<td>Fig. 11.3 Geological map of Bjørnøya</td>
<td>211-2</td>
</tr>
<tr>
<td>Fig. 11.4 Summary plot of seismic velocity, porosity and estimated minimal subsidence rate</td>
<td>212</td>
</tr>
<tr>
<td>Fig. 11.5 Structure contour map of the base of the Røedvik Formation, with diagrammatic profile</td>
<td>213</td>
</tr>
<tr>
<td>Fig. 11.6 Schematic structural map of Bjørnøya</td>
<td>220</td>
</tr>
<tr>
<td>Fig. 11.7 Geological map and sketch cross-section through basement rocks of southern Bjørnøya</td>
<td>221</td>
</tr>
<tr>
<td>Fig. 11.8 Structure of the western Barents Sea showing the possible location of the Iapetus suture</td>
<td>223</td>
</tr>
</tbody>
</table>

CHAPTER 12

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 12.1 Outcrops of pre-Vendian rocks (mainly Proterozoic)</td>
<td>228</td>
</tr>
<tr>
<td>Fig. 12.2 Precambrian timescale comparing chronostratigraphic and chronometric scales</td>
<td>229</td>
</tr>
<tr>
<td>Fig. 12.3 Correlation of pre-Vendian sequences of Ny Friesland and Nordaustlandet</td>
<td>230</td>
</tr>
<tr>
<td>Fig. 12.4 Correlation of pre-Vendian sequences of the western terranes</td>
<td>231</td>
</tr>
<tr>
<td>Fig. 12.5 Correlation of Precambrian sequences in the western, central and eastern terranes, with some age constraints</td>
<td>236</td>
</tr>
<tr>
<td>Fig. 12.6 Map showing the distribution of the proto-basement in Svalbard</td>
<td>237</td>
</tr>
<tr>
<td>Fig. 12.7 Pressure–temperature plot for the metamorphic complex of Biskayer Peninsula</td>
<td>238</td>
</tr>
<tr>
<td>Fig. 12.8 Correlation of East Greenland and Ny Friesland Proterozoic sequences</td>
<td>240</td>
</tr>
<tr>
<td>Fig. 12.9 Schematic reconstruction of eastern Laurentia and Baltica for the period 1900–1600 Ma</td>
<td>240</td>
</tr>
<tr>
<td>Fig. 12.10 Pre-Vendian aulacogen model showing the distribution of the Greenland, Barents and Baltic cratons</td>
<td>241</td>
</tr>
<tr>
<td>Fig. 12.11 Global palinspastic reconstruction for Kanatia timeshowing the locations of rift margins and glacialic deposits</td>
<td>242</td>
</tr>
</tbody>
</table>

CHAPTER 13

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 13.1 Outcrop map showing the distribution of Vendian outcrops in Svalbard</td>
<td>245</td>
</tr>
<tr>
<td>Fig. 13.2 Vendian biostratigraphy and isotopic variations of carbonate rocks</td>
<td>246</td>
</tr>
<tr>
<td>Fig. 13.3 Correlation of Vendian successions in Svalbard</td>
<td>247</td>
</tr>
<tr>
<td>Fig. 13.4 Secular variation in δ13C plotted against stratigraphic depth (m) for the Varanger and Sturtian succession of Spitsbergen</td>
<td>249</td>
</tr>
<tr>
<td>Fig. 13.5 Interpretation of Vendian environments from the successions of northeastern Spitsbergen</td>
<td>250</td>
</tr>
<tr>
<td>Fig. 13.6 Vendian correlation chart for representative successions of Svalbard and adjacent areas of the North Atlantic–Arctic region</td>
<td>252</td>
</tr>
</tbody>
</table>
Fig. 19.16 Paleogene palaeogeologic maps of Spitsbergen 415
Fig. 20.15 Palaeogeologic map of Spitsbergen in Mid-Paleocene time 415
Fig. 20.16 Paleogene palaeogeologic maps of Spitsbergen latest Paleocene to early Mid-Eocene 415–6

CHAPTER 21
Fig. 21.1 Neogene and Quaternary volcanics; Quaternary hydrothermal springs, seeps and microseismic zones 419
Fig. 21.2 Neogene and Quaternary time scale 420
Fig. 21.3 Bathymetric features and structures of the Norwegian–Greenland Sea and eastern Arctic Ocean 420
Fig. 21.4 Present-day bathymetric structures in the North Atlantic 422
Fig. 21.5 Map showing depth to basement in Spitsbergen as defined from aeromagnetic data 423
Fig. 21.6 Map of the Bockfjorden area indicating the locations of hydrothermal springs 424
Fig. 21.7 Compositions of Neogene plateau lavas 424
Fig. 21.8 Simplified profiles and Tertiary stratigraphy of the Western Barents Shelf 426
Fig. 21.9 Summary of the Neogene units of the western Barents Shelf margin 427
Fig. 21.10 Interpretation of the Neogene fluvial drainage pattern in the Barents Sea 427
Fig. 21.11 Map of the Barents Sea delineating the main erosion areas from mid-Miocene to Recent 428
Fig. 21.12 Summit-height map of Svalbard 429
Fig. 21.13 Diagrammatic model of the chronology of the deglaciation pattern of the Western Barents Sea 430
Fig. 21.14 Diagrammatic illustrations of patterned ground 433
Fig. 21.15 Late Pleistocene stratigraphy of inner Isfjorden 434

CHAPTER 22
Fig. 22.1 Map of Svalbard with the distribution of the modern glaciers and ice caps 437
Fig. 22.2 (a) Map of estimated precipitation over Svalbard; (b) Map of estimated equilibrium line altitude over Svalbard 438
Fig. 22.3 Landsat satellite image of Nordaustlandet with the interpretation of ice-cap drainage basins inset 439
Fig. 22.4 Airborne radio-echo sounding data from Austfonna, Nordaustlandet 440
Fig. 22.5 Ice surface and bedrock profiles from radio-echo sounding of Nordaustlandet 441
Fig. 22.6 Fast-flowing glaciers on Vestfonna 441
Fig. 22.7 Photographs of a surge of Bakaninbreen, Spitsbergen 442
Fig. 22.8 The terminus of a tidewater glacier 443
Fig. 22.9 Photographs of contrasting iceberg morphology: (a) tabular, (b) irregular 444
Fig. 22.10 Temperature records from 1912 444
Fig. 22.11 Mass balance records for three Spitsbergen glaciers 445
Fig. 22.12 Energy balance model predictions of glacier response to future global warming 445
Fig. 22.13 Oxygen isotope ratios from Lomonosovfonna since about AD 1200 445

APPENDIX
Fig. 23.1 Plot of major wells in Svalbard 451
Fig. 23.2 Mesozoic petroleum source-rocks of the Arctic 453
Tables

Table 1.1 Geographical nomenclature for Svalbard archipelago	5
Table 1.2 Arctic summers and winters in Svalbard	8
Table 3.1 Precambrian chronometric scale	28
Table 15.1 Eastern and western outcrops of Ny Friesland	276
Table 16.1 Divisions of the Devonian	289
Table 17.1 Divisions of the Kapp Starostin Formation	327
Table 17.2 Carboniferous and Permian sedimentation rates	334
Table 19.1 Average of chemical analysis made by Tyrrell & Sandford (1933)	378
Table 23.1 Deep well data for Svalbard	452

Photographs

Interior of south central Spitsbergen from the air | Cover |
Ny-Alesund and Tre Kroner | ii |
Bay ice in Thitsbukta and Scheteligfjellet seen from Ny-Alesund | ii |
Comfortlesbreen and Aavartskarbkreen from near the shore | 1 |
Crevassed Monacobreen snout seen from the east | 1 |
Small bergs in inner Kongsfjorden with Brøggerhalvøya beyond | 2 |
Late summer in mid Kongsfjorden with Kapp Mitra and the motor boat Salterella | 2 |
Snow camp in southwest Lomonosovfonna looking down Wilsonbreen | 45 |
Snow-capped mountains of Ny Friesland from northern Lomonosovfonna | 45 |
Snow scooter in the middle reaches of Tryggvebreen, Ny Friesland | 46 |

Tracked amphibious vehicle hauling sledges at Draken, Ny Friesland | 46 |
Camp on Nordensiöldkysten, a strandflat on the west coast of Spitsbergen | 225 |
Camp by Siktefjellet on raised beach north of Liefdefjorden | 225 |
The motor boat Arctoceras equipped for living aboard and working ashore | 226 |
The motor boat Salterella helped on her way through pack ice | 226 |
A safe anchorage for easy access ashore below Alkhornet | 447 |
Routine boat passage through Smeerenburgfjorden en route to the north | 447 |
The motor boat Salterella in north Liefdefjorden anchored off Erikkjoo | 448 |
Access up Hannabreen from Liefdefjorden with signs of the end of summer | 448 |
Preface

I think that we shall have to get accustomed to the idea that we must not look upon science as a “body of knowledge”, but rather as a system of hypotheses; that is to say, as a system of guesses or anticipations which in principle cannot be justified, but with which we work as long as they stand up to tests, and of which we are never justified in saying that we know they are “true” or “more or less certain” or even “probable”.

Karl A. Popper (From a paper that Popper read in 1934 when his Logik des Forschung was in proof. It was published in English in the new appendixes of his Logic of Scientific Discovery 1959, p. 317).

This work attempts to present the geology of Svalbard in some detail, arranged systematically as a definitive study and so reflecting the present conjuncture of research. It may thus meet the needs of specialists with information on related fields or of any geoscientist wanting an indication of what is known about this key region.

Svalbard (peaked mountains), the name earlier referred to the whole archipelago. It is now replaced by the name Svalbard (cold coasts), within which Spitsbergen is the principal landmass. Spitsbergen alone is about the size of Switzerland and the whole archipelago a little less than the area of Scotland. Geologically it has the wealth in variety and complexity in stratigraphy and structure no less than these classic areas. Moreover with an international history and present treaty status many nations have participated in research so the geological literature currently comprising far more than 3000 publications is widely scattered and rapidly increasing. There are indeed excellent published geological outlines, but no comprehensive work.

Part 1 of this work is introductory, setting the stage. Chapter 3 in particular presents the principal geological conventions used throughout and outlines the main geological features and tectonic hypotheses. Part 2 divides Svalbard into eight somewhat arbitrary regions/sectors which are described with minimal interpretation. The rock successions are described briefly from the top down as illustrated. Part 3 interprets historical events and environments which are described with minimal interpretation.

My interest in the project stems from about 50 years of research in many aspects of Svalbard geology with some 50 colleagues and collaborators listed below. However this book purports to be an objective study of contributions from international sources. Where there are differences of opinion alternative views are presented. Obviously, however, no single person could comprehend the whole literature nor avoid some personal bias when making a coherent synthesis that has been thought through. These objectives would take more than a lifetime to fulfill. This work is presented as a contemporary statement in the spirit of the quotation at the head of this preface. By venturing conjectures and exposing them freely in graphic form as well as in the text it is intended that they shall be subject to critical assessment. Lack of appropriate evidence does not vitiate an hypothesis nor can abundant supporting evidence establish it. Only contradictory evidence provides effective criticism. This work presents a challenge and a platform for further research and will be superseded in the normal course of science.

The philosophy behind this study is that all geological data may be integrated in time and space, that is stratigraphy in the broad sense. This regional synthesis is offered as a contribution to Earth history. It is a two way interaction. Understanding of process enables and demands the interpretation of historical data and the attempt to understand history leads to further modifications in the theory of the Earth. For example: the attempt to make sense of the field data led to early hypotheses of continental drift; of cooling and heating of the mantle with regional subsidence and uplift; of compression leading to lateral escape, transpression and transtension; of large scale paleo-strike-slip of former provinces and allochthonous terranes; and of global Vendian glaciation.

This is a personal synthesis at the conclusion of work epitomizing a journey that began for me in Spitsbergen on graduation in 1938. I have been privileged as a student and teaching officer in a great University and as a member and Fellow of an ancient Cambridge College. These positions require specified duties in teaching and administration, but with freedom to pursue investigations whenever and wherever they may lead, provided the necessary resources can be found.

I came into a culture where the older generation worked out their own research as individuals with little or no organized cooperation.

After two abortive research lines I decided in 1948 both to attempt to tie up some unfinished work in Spitsbergen and at the same time to try out a pattern of cooperative research with our students. All I have learned about research was gained through such interaction and that is why I dedicate this work to those colleagues. Some, hardly junior, have long achieved distinction. About 400 persons have in diverse ways contributed to our joint enterprises. I draw attention to the early decades when fieldwork involved long boat journeys to Spitsbergen and then transport by small open boats, manhauled sledges and always much pack-carrying to the study area. Equipment was primitive and conditions often harsh. We thought ourselves fortunate indeed to share the experience of our predecessors in Svalbard exploration. I mention only two colleagues. Colin B. Wilson worked with me in Ny Friesland contributing greatly to the work in Chapter 7. His contribution, first in our systematic survey of Ny Friesland and later on his private solo excursions by small boat with outboard, carrying sledges and supplies from Longyearbyen round the northwest to Ny Friesland where he recorded exemplary observations across enormous distances. His motivation was the shear joy of discovery and only with difficulty was he persuaded to prepare work for publication. His death in 1959, not in Spitsbergen, but by an accident in Cambridge, deprived us of a remarkable investigator. C. John B. Kirton a brilliant first year student was killed in 1958 by a flying stone while holding a fossil at a new locality on a mountain later named after him. A service was held in 1959 at his remote grave and memorial cairns were built nearby and by the shoreside base. He represents the best in our university tradition.

Our research group was never an official university project and we paid our way as best we could in the early days, contributing personally. The need for independence led to the formation of Cambridge Spitsbergen Expeditions, (later Cambridge Svalbard Exploration). This then led to the formation of the Cambridge Arctic Shelf Programme to give more security of employment and to spread our interests so as not to compete for limited funds in Britain or Norway.

Finally I acknowledge one colleague, my wife Elisabeth, who in the early years looked after our family taking domestic responsibilities single handed. In the middle years she assisted in Svalbard on 13 field seasons and has latterly given invaluable support to my writing of this work for which I alone must bear full responsibility.

W. B. Harland
July 1997

Department of Earth Sciences
University of Cambridge
cambridge CB2 3EQ

Downing Street
Two kinds of acknowledgement relate to the research and to this publication.

First paying tribute to those to whom the book is dedicated the research has benefited from the participation of many colleagues during 45 field seasons as well as in Cambridge. They contributed greatly to my education and determination to write this book. It may be of interest to other Svalbard geologists to note who have published from this experience. In list A those names with asterisks worked on Svalbard material for their research degrees, others participated, some over one period.

It would, however, be wrong to think only of the geologists whose reward was in their work. We depended throughout on logistic support. Of the hundred or more who supported the work in this way list C names those who took responsibility for more than one season, for example captaining boats.

More than a hundred geology undergraduates joined as assistants and many have gone on to distinguish themselves. They often asked the most penetrating questions, made unlikely observations and were rewarding companions.

Whereas the above thanks are for my own personal indebtedness to those who have shared in the work I gladly acknowledge the immense debt due to the larger scientific community whose published work is the basis of this book as may be noted from the list of publications cited. At the same time I should declare that by no means have the extensive files of CSE and CASP unpublished work been abstracted here. I remembered only what seemed relevant.

The lexicon of stratigraphic names begun in the fifties was abbreviated and checked recently in co-operation with W. K. Dallmann (Norsk Polarinstittut Geologist and Chairman of the SKS).

The more comprehensive bibliography (the basis of the reference list here) has a long history beginning with the earliest research. Managed for many years as a card index by K. N. Herod it was in due course computerised initially by R. A. Scott (CASP) and subsequently updated at regular intervals with the continuing help of D. Manasrah (CASP), and E. L. Lesk, Information Officer in CASP, who scanned new literature for me through this work. Publications were listed as met in the work and not sought out for a comprehensive bibliography.

Unless otherwise stated in the captions, the figures were devised and sketched by me and then executed on disc by those who have initialled the diagrams, mainly L. M. Anderson, C. F. Stephens, S. R. A. Kelly, D. Manasrah and P. A. Doubleday.

Whereas I drafted most of the text and sketched most of the figures others contributed of their expertise as indicated in the chapter headings. The late Dr A. Challinor gave permission to include the serial cross sections of the West Spitsbergen Orogen from his dissertation and later CSE reports (Section 20.6).

D. I. M. Macdonald, Chief Geologist of CASP, supported this work throughout and seconded CASP staff at different times to this project. I. Geddes helped with the proofs. The place name list was compiled by Mr L. M. Anderson.

(A) Geologists accompanying Cambridge field parties (and/or) who have had Svalbard research published

* K. C. Allen
* L. M. Anderson
* K. A. Auckland
* D. J. Batten
* M. B. Bayly
* D. E. T. Bidgood
* G. S. Boulton
* S. H. Buchan
* H. J. Campbell
* A. Challinor
* C. Croxton
* J. L. Cutbill
* M. Dettmann
* J. A. D. Dickson
* P. W. Ditchfield
* E. K. Dowdeswell
* J. A. Dowdeswell
* M. Dowling
* P. Doyle
* I. J. Fairchild
* C. L. Forbes
* R. A. Fortey
* P. F. Friend

* M. D. Fuller
* R. A. Gayer
* I. Geddes
* D. G. Gee
* E. R. Gee
* D. J. Gobbet
* A. Hallam
* M. J. Hambrey
* M. Head
* A. P. Heafford
* W. G. Henderson
* K. N. Herod
* D. W. Holliday
* W. T. Horsfield
* K. Howells
* N. F. Hughes
* P. F. Hutchins
* L. Kanat
* S. R. A. Kelly
* A. H. Knoll
* J. Laiing
* U. Lehmann
* B. E. Lock

J. Lowry
S. R. Lu
D. I. M. Macdonald
* A. J. McCann
* J. R. H. McWhae
* G. M. Manby
* A. Mann
* D. Masson-Smith
* P. I. Maton
* M. Moody-Stuart
* A. P. Morris
J. E. Odell
C. A. G. Pickton
* G. Playford
* D. J. W. Piper
S. P. Price
M. Quest
P. F. Rawson
A. B. Reynolds
W. Schwarzacher
R. A. Scott
* D. G. Smith

Finally the work has benefited from the professionalism of the staff of the Geological Society Publishing House in Bath, particularly the Staff Editor Angharad Hills.
M. P. Smith
I. Snape
* H. Spall
C. F. Stephens
K. Swett

F. Thiedig
R. S. W. Thornley
C. Townsend
G. Vallance
R. H. Wallis

* P. Waddams
* C. B. Wilson
T. S. Winsnes
N. J. R. Wright
R. T. Wu

* Svalbard research students at one time

(B) Some of those who contributed to the field work and later in other ways

M. J. Allderidge
T. R. Astin
P. B. H. Bailey
M. H. P. Bott
D. D. Clark-Lowes
A. P. R. Cooper
L. E. Craig
T. A. Davies

J. G. Elbo
N. Golenko
G. E. Groom
B. Harte
E. M. Himsworth
C. A. Jourdan
R. Mason
D. P. McKenzie

B. Moore
M. J. O'Hara
P. C. Parks
C. V. Reeves
O. P. Singleton
J. C. Tippen
F. J. Vine
P. T. Warren

(C) Logistic leaders (e.g. boat captains) for more than one season

R. A. Browne
M. F. Chantrey
N. I. Cox

W. D. H. Fairbairn RN
J. H. Gammage
A. H. Neilson

A. C. Smith
M. Tuson
Participants

W. B. HARLAND
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

L. M. ANDERSON
CASP, West Building, Gravel Hill, Huntingdon Road, Cambridge CB3 0DJ, UK

D. MANASRAH
CASP, West Building, Gravel Hill, Huntingdon Road, Cambridge CB3 0DJ, UK

N. J. BUTTERFIELD
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

A. CHALLINOR (Deceased)
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

P. A. DOUBLEDAY
CASP. Present address: Amerada Hess Ltd, 33 Grosvenor Place, London SW1 X7HY, UK

E. K. DOWDESWELL
Centre for Glaciology, Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Cardigan SY23 3DB, UK

J. A. DOWDESWELL
Centre for Glaciology, Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, Cardigan SY23 3DB, UK

I. GEDDES
CASP. Present address: 1 School Close, Keevil, Trowbridge BA14 6SB, UK

S. R. A. KELLY
Consultant with CASP, 10 Belvoir Road, Cambridge CB4 1JJ, UK

E. L. LESK
CASP, West Building, Gravel Hill, Huntingdon Road, Cambridge CB3 0DJ, UK

A. M. SPENCER
Statoil, Forushagen, 4035 Stavanger, Norway

C. F. STEPHENS
CASP. Present address: Amoco (UK), Amoco House, West Gate, London W5 1XL, UK
Conventions

Geological conventions employed throughout the work are treated in Chapter 3. These include the international time scale, principles for lithostratigraphic nomenclatures, the uses of some technical terms and the descriptive names for Svalbard structures. Place names are explained in Chapter 1 and listed in Part 4.

Acronyms in common use

CASP: Cambridge Arctic Shelf Programme.
GSSP: Global stratotype section and point.
IKU: Continental Shelf Institute, Trondheim.
NP: Norsk Polarinstitutt.
SKS: Stratigrafisk Komite for Svalbard.

Authority

It is intended that any positive statement be supported by a reference at the end of the paragraph or subsection. If none it may be assumed either that the statement is common knowledge or that it is the original contribution (opinion) of this work. The names of up to three authors may be cited in the text and ‘et al.’ generally refers to four or more.

Use of contemporary nomenclature and compass orientation

In recording earlier work, unless original wording is quoted (in quotes), the present usage (for example of place and stratigraphic names) is generally substituted. Original names may be added in parentheses. Compass directions for earlier geological ages are expressed in the present orientation without implication as to what was the ancient orientation.

Transliteration

The Norwegian alphabet places symbols ø and å at the end whereas they are placed here as though unmodified in the English language alphabetical order.

For Chinese: Pinyin

For Cyrillic: The system used was jointly recommended by the Permanent Committee on Geographical Names (PCGN) for British Official use and the United States Board on Geographical Names (USBGN), as revised in 1970 and 1972. It is used in the Times Atlas of the World, the Scott Polar Research Institute and the Geographical Names Division of the US Army Topographic Command, which has published perhaps the most comprehensive gazetteer of the FSU. The ISO system has advantages but requires the addition to normal type of accurate diacritical symbols unfamiliar in the west.

Use of stratigraphic nomenclature (as explained in Section 3)

The problem of divergent stratigraphic nomenclature and classification has been met by a discussion arriving at a conclusion generally early in each historical chapter. That discussion, often seemingly of miniscule interest, may then be confined to that particular section. The conclusions may be applied in the rest of the work both in earlier or later parts. Therefore, the reader who finds a different scheme employed and is possibly irritated thereby, should find the reasoning behind such a choice in a section in each of the historical chapters. The Stratigraphic Glossary may help.